lunes, 6 de junio de 2011

REACTANCIA

REACTANCIA

Se denomina Reactancia a la impedancia ofrecida, al paso de la corriente alterna, por un circuito en el que solo existen inductores (bobinas) o capacitancias (condensadores) puras, esto es, sin resistencias. No obstante, esto representaría una condición ideal, puesto que no existen en la realidad bobinas ni condensadores que no contengan una parte resistiva, con lo cual los circuitos en general estarán formados por una composición R-L-C (resistencia, inductor y capacitor).
En el análisis de circuitos R-L-C, la reactancia, es  representada como (X) es la parte imaginaria del número complejo que define el valor de la impedancia, mientras que la resistencia (R) es la parte real de dicho valor.
Dependiendo del valor de la reactancia se puede decir que el circuito presenta reactancia capacitiva, cuando X<0, reactancia inductiva, cuando X>0 o es puramente resistivo, cuando X=0. Como impedancia, que es en realidad, la reactancia también se mide en ohmios. La reactancia capacitiva se representa por Xc y su valor complejo es dado por la fórmula:
En la que:
Xc= Reactancia capacitiva en ohmios
j=Unidad imaginaria
C=Capacitancia en faradios
f=Frecuencia en hertzios

La reactancia inductiva se representa por XL y su valor complejo es dado por:
En la que:
XL= Reactancia inductiva en ohmios
j=Unidad imaginaria
L=Inductancia en henrios
f=Frecuencia en hertzios


Se puede ver reflejado en la actualidad  ya que la tecnologia avanza a una gran velocidad con ello se denota de manera radical el lanzamiento de una nueva generacion de faros en la industria automotriz ya que el objetivo de introducirlo al mercado era iluminar mejor el borde de la calzada, lo cual reduce la fatiga visual del conductor. ademas La luz se genera por medio de un arco voltaico de hasta 30.000 voltios, entre dos electrodos tungsteno situados en una cámara de vidrio, cargada con gas xenón y sales de metales halogenizados.

El arco es generado por una reactancia o reacción que produce una corriente alterna de 400 Hz. En el interior de la lámpara se alcanza una temperatura de aproximadamente 700 ºC. Una vez efectuado el encendido, se hace funcionar la lámpara de descarga de gas aproximadamente durante 3 segundos, con una corriente de mayor intensidad. El objetivo es que la lámpara alcance su claridad máxima tras un retardo mínimo de 0,3 segundos. Debido a este ligero retardo no se utilizan lámparas de descarga de gas para la luz de carretera.

En virtud de la composición química del gas, en la ampolla o bulbo de la lámpara se genera una luz con un elevado porcentaje de luz verde y azul. Esa es la característica de identificación exterior de la técnica de luminiscencia por descarga de gas.

LÓPEZ BASTIDA MAYRA TERESA 6CLM

NUCLEO ATOMICO

NUCLEO ATOMICO
El núcleo atómico es la parte central de un átomo, tiene carga positiva, y concentra más del 99.99% de la masa total del átomo. Está formado por protones y neutrones (denominados nucleones) que se mantienen unidos por medio de la interacción nuclear fuerte, la cual permite que el núcleo sea estable, a pesar de que los protones se repelen entre sí (como los polos iguales de dos imanes). La cantidad de protones en el núcleo determina el elemento químico al que pertenece. Los núcleos atómicos con el mismo número de protones, pero distinto número de neutrones, se denominan isótopos; por esta razón, átomos de un mismo elemento pueden tener masas diferentes.
La existencia del núcleo atómico fue deducida del experimento de Rutherford, donde se bombardeó una lámina fina de oro con partículas alfa, que son núcleos atómicos de helio emitidos por rocas radiactivas. La mayoría de esas partículas traspasaban la lámina, pero algunas rebotaban, lo cual demostró la existencia de un minúsculo núcleo atómico.
Historia
El descubrimiento de los electrones fue la primera indicación de la estructura interna de los átomos. A comienzos del siglo XX el modelo aceptado del átomo era el de JJ Thomson's "pudín de pasas" modelo en el cual el átomo era una gran bola de carga positiva con los pequeños electrones cargados negativamente incrustado dentro de la misma. Por aquel entonces, los físicos habían descubierto también tres tipos de radiaciones procedentes de los átomos : alfa, beta y radiación gamma. Los experimentos de 1911 realizados por Lise Meitner y Otto Hahn, y por James Chadwick en 1914 mostraron que el espectro de decaimiento beta es continuo y no discreto. Es decir, los electrones son expulsados del átomo con una gama de energías, en vez de las cantidades discretas de energía que se observa en rayos gamma y decaimiento alfa. Esto parecía indicar que la energía no se conservaba en estos decaimiento. Posteriormente se descubrió que la energía sí se conserva, con el descubrimiento de los neutrinos. En 1906 Ernest Rutherford publicó "El retraso de la partícula alfa del radio cuando atraviesa la materia", en Philosophical Magazine (12, p. 134-46). Hans Geiger amplió este trabajo en una comunicación a la Royal Society (Proc. Roy. Soc. 17 de julio de 1908) con experimentos y Rutherford se había hecho pasar aire a través de las partículas α, papel de aluminio y papel de aluminio dorado. Geiger y Marsden publicaron trabajos adicionales en 1909 (Proc. Roy. Soc. A82 p. 495-500) y ampliaron aún más el trabajo en la publicación de 1910 por Geiger (Proc. Roy. Soc. Febrero 1, 1910). En 1911-2 Rutherford explicó ante la Royal Society los experimentos y propuso la nueva teoría del núcleo atómico.
Por esas mismas fechas (1909) Ernest Rutherford realizó un experimento en el que Hans Geiger y Ernest Marsden, bajo su supervisión dispararon partículas alfa (núcleos de helio) en una delgada lámina de oro. El modelo atómico de Thomson predecía que la de las partículas alfa debían salir de la lámina con pequeñas desviaciones de sus trayectorias están. Sin embargo, descubrió que algunas partículas se dispersan a grandes ángulos, e incluso completamente hacia atrás en algunos casos. Este descubrimiento en 1911, llevó al modelo atómico de Rutherford, en que el átomo está constituido por protones y electrones. Así, el átomo del nitrógeno-14 estaría constituido por 14 protones y 7 electrones.
El modelo de Rutherford funcionó bastante bien hasta que los estudios llevadas a cabo por Franco Rasetti, en el Institute of Technology de California en 1929. En 1925 se sabía que los protones y electrones tiene un espín de 1 / 2, y en el modelo de Rutherford nitrógeno - 14 los 14 protones y seis de los electrones deberían cancelar sus contribuciones al espín total, estimándose un espín total de 1 / 2. Rasetti descubierto, sin embargo, que el nitrógeno - 14 tiene un espín total unidad
En 1930 Wolfgang Pauli no pudo asistir a una reunión en Tubinga, y en su lugar envió una carta famoso con la clásica introducción "Queridos Señoras y señores radiactivos ". En su carta Pauli sugirió que tal vez existía una tercera partícula en el núcleo, que la bautizó con el nombre de "neutrones". Sugirió que era más ligero que un electrón y sin carga eléctrica, y que no interactuaba fácilmente con la materia (y por eso todavía no se le había detectado). Esta hipótesis permitía resolver tanto el problema de la conservación de la energía en la desintegración beta y el espín de nitrógeno - 14, la primera porque los neutrones llevaban la energía no detectada y el segundo porque un electrón extra se acoplaba con el electrón sobrante en el núcleo de nitrógeno - 14 para proporcionar un espín de 1. Enrico Fermi redenominó en 1931 los neutrones de Pauli como neutrinos (en italiano pequeño neutral) y unos treinta años después se demostró finalmente que un neutrinos realmente se emiten en el decaimiento beta.
En 1932 James Chadwick se dio cuenta de que la radiación que de que había sido observado por Walther Bothe, Herbert L. Becker, Irène y Jean Frédéric Joliot-Curie era en realidad debido a una partículas que él llamó el neutrón. En el mismo año Dimitri Ivanenko sugirió que los neutrones eran, de hecho partículas de espín 1 / 2, que existían en el núcleo y que no existen electrones en el mismo, y Francis Perrin sugirió que los neutrinos son partículas nucleares, que se crean durante el decaimiento beta. Fermi publicó 1934 una teoría de los neutrinos con una sólida base teórica. En el mismo año Hideki Yukawa propuso la primera teoría importante de la fuerza para explicar la forma en que el núcleo mantiene junto.
Forma y tamaño del núcleo

Los núcleos atómicos son mucho más pequeños que el tamaño típico de un átomo (entre 10 mil y 100 mil veces más pequeños). Además contienen más del 99% de la masa con lo cual la densidad másica del núcleo es muy elevada. Los núcleos atómicos tienen algún tipo de estructura interna, por ejemplo los neutrones y protones parecen estar orbitando unos alrededor de los otros, hecho que se manifiesta en la existencia del momento magnético nuclear. Sin embargo, los experimentos revelan que el núcleo se parece mucho a una esfera o elipsoide compacto de 10-15 m (= 1 fm), en el que la densidad parece prácticamente constante. Naturalmente el radio varía según el número de protones y neutrones, siendo los núcleos más pesados y con más particulas algo más grandes. La siguiente fórmula da el radio del núcleo en función del número de nucleones
Estabilidad del núcleo

Los núcleos atómicos se comportan como partículas compuestas a energías suficientemente bajas. Además, la mayoría de núcleos atómicos por debajo de un cierto peso atómico y que además presentan un equilibrio entre el número de neutrones y el número de protones (número atómico) son estables. Sin embargo, sabemos que los neutrones aislados y los núcleos con demasiados neutrones (o demasiados protones) son inestables.
Esto hace que continuamente los neutrones del núcleo se transformen en protones, y algunos protones en neutrones, esto hace que la reacción (1) apenas tenga tiempo de acontecer, lo que explica que los neutrones de los núcleos atómicos sean mucho más estable que los neutrones aislados. Si el número de protones y neutrones se desequilibra, se abre la posibilidad de que en cada momento haya más neutrones y sea más fácil la ocurrencia de la reacción
Estructura interna del átomo.
En 1808 el químico inglés John Dalton propone una nueva teoría sobre la constitución de la materia. Según Dalton toda la materia está formada por átomos indivisibles e invisibles, estos a su vez se unen para formar compuestos en proporciones enteras fijas y constantes. De hecho Dalton propuso la existencia de los átomos como una hipótesis para explicar porqué los átomos sólo se combinaban en ciertas combinaciones concretas. El estudio de esas combinaciones le llevó a poder calcular los pesos atómicos. Para Dalton la existencia del núcleo atómico era desconocida y se consideraba que no existían partes más pequeñas.
En 1897 Joseph John Thomson fue el primero en proponer un modelo estructural interno del átomo. Thomson fue el primero en identificar el electrón como partícula subatómica de carga negativa y concluyó que «si los átomos contienen partículas negativas y la materia se presenta con neutralidad de carga, entonces deben existir partículas positivas». Es así como Thomson postuló que el átomo debe ser una esfera compacta positiva en la cual se encontrarían incrustados los electrones en distintos lugares, de manera que la cantidad de carga negativa sea igual a la carga positiva.
Así ni el modelo atómico de Dalton ni el de Thomson incluían ninguna descripción del núcleo atómico. La noción de núcleo atómico surgió en 1911 cuando Ernest Rutherford y sus colaboradores Hans Geiger y Ernest Marsden, utilizando un haz de radiación alfa, bombardearon hojas laminadas metálicas muy delgadas, colocando una pantalla de sulfuro de zinc a su alrededor, sustancia que tenía la cualidad de producir destellos con el choque de las partículas alfa incidentes. La hoja metálica fue atravesada por la mayoría de las partículas alfa incidentes; algunas de ellas siguieron en línea recta, otras fueron desviadas de su camino, y lo más sorprendente, muy pocas rebotaron contra la lámina.
Los resultados del experimento requerían parámetros de impacto muy pequeños, y por tanto que el núcleo estuviera concentrado en la parte central, el núcleo de carga positiva, donde estaria concentrada la masa del átomo. con ello explicaba la desviación de las partículas alfa (partículas de carga positiva). Los electrones se encontrarían en una estructura externa girando en órbitas circulares muy alejadas del núcleo, lo que explicaría el paso mayoritario de las partículas alfa a través de la lámina de oro.
En 1913 Niels Bohr postula que los electrones giran a grandes velocidades alrededor del núcleo atómico. Los electrones se disponen en diversas órbitas circulares, las cuales determinan diferentes niveles de energía. El electrón puede acceder a un nivel de energía superior, para lo cual necesita "absorber" energía. Para volver a su nivel de energía original es necesario que el electrón emita la energía absorbida (por ejemplo en forma de radiación).
Comúnmente existen dos modelos diferentes describir el núcleo atómico:
  • El modelo de la gota de agua
  • El modelo de capas

Aunque dichos modelos son mútuamente excluyentes en sus hipótesis básicas tal como fueron formulados originalmente, A. Bohr y Mottelson construyeron un modelo mixto que combinaba fenomenológicamente características de ambos modelos.

tiempo

 tiempo es la magnitud física con la que medimos la duración o separación de acontecimientos sujetos a cambio, de los sistemas sujetos a observación, esto es, el período que transcurre entre el estado del sistema cuando éste aparentaba un estado X y el instante en el que X registra una variación perceptible para un observador (o aparato de medida). Es la magnitud que permite ordenar los sucesos en secuencias, estableciendo un pasado, un presente y un futuro, y da lugar al principio de causalidad, uno de los axiomas del método científico. El tiempo ha sido frecuentemente concebido como un flujo sucesivo de situaciones atomizadas.
Su unidad básica en el Sistema Internacional es el segundo, cuyo símbolo es s (debido a que es un símbolo y no una abreviatura, no se debe escribir con mayúscula, ni como "seg", ni agregando un punto posterior).


Causalidad (física)paradoja de los gemelos y espacio-tiempo
]
El concepto físico del tiempo

Dados dos eventos puntuales E1 y E2, que ocurren respectivamente en instantes de tiempo t1 y t2, y en puntos del espacio diferentes P1 yP2, todas las teorías físicas admiten que éstos pueden cumplir una y sólo una de las siguientes tres condiciones:
  1. Es posible para un observador estar presente en el evento E1 y luego estar en el evento E2, y en ese caso se afirma que E1 es un evento anterior a E2. Además, si eso sucede, ese observador no podrá verificar 2.
  2. Es posible para un observador estar presente en el evento E2 y luego estar en el evento E1, y en ese caso se afirma que E1 es un evento posterior a E2. Además si eso sucede, ese observador no podrá verificar 1.
  3. Es imposible, para un observador puntual, estar presente simultáneamente en los eventos E1 y E2. .
Dado un evento cualquiera, el conjunto de eventos puede dividirse según esas tres categorías anteriores. Es decir, todas las teorías físicas permiten, fijado un evento, clasificar a los eventos en: (1) pasado, (2) futuro y (3) resto de eventos (ni pasados ni futuros). La clasificación de un tiempo presente es debatible por la poca durabilidad de este intervalo que no se puede medir como un estado actual sino como un dato que se obtiene en una contínua sucesión de eventos. En mecánica clásica esta última categoría está formada por los sucesos llamados simultáneos, y en mecánica relativista, por los eventos no relacionados causalmente con el primer evento. Sin embargo, la mecánica clásica y la mecánica relativista difieren en el modo concreto en que puede hacerse esa división entre pasado, futuro y otros eventos y en el hecho de que dicho carácter pueda ser absoluto o relativo respecto al contenido de los conjuntos.]

El tiempo en mecánica clásica

En la mecánica clásica, el tiempo se concibe como una magnitud absoluta, es decir, es un escalar cuya medida es idéntica para todos losobservadores (una magnitud relativa es aquella cuyo valor depende del observador concreto). Esta concepción del tiempo recibe el nombre de tiempo absoluto. Esa concepción está de acuerdo con la concepción filosófica de Kant, que establece el espacio y el tiempo como necesarios por cualquiera experiencia humana. Kant asimismo concluyó que el espacio y el tiempo eran conceptos subjetivos. Cada observador hará una división tripartita de los eventos clasificándolos en: (1) eventos pasados, (2) eventos futuros y (3) eventos ni pasados y ni futuros. La mecánica clásica y la física pre-relativista asumen:
  1. Fijado un acontecimiento concreto todos los observadores sea cual sea su estado de movimiento dividirán el resto de eventos en los mismos tres conjuntos (1), (2) y (3), es decir, dos observadores diferentes coincidirán en qué eventos pertenecen al pasado, al presente y al futuro, por eso el tiempo en mecánica clásica se califica de "absoluto" porque es una distinción válida para todos los observadores (mientras que en mecánica relativista esto no sucede y el tiempo se califica de "relativo").
  2. En mecánica clásica, la última categoría, (3), está formada por un conjunto de puntos tridimensional, que de hecho tiene la estructura de espacio euclídeo. Dados dos eventos se llaman simultáneos fijado uno de ellos el segundo es un evento de la categoría (3).
Aunque dentro de la teoría especial de la relatividad y dentro de la teoría general de la relatividad, la división tripartita de eventos sigue siendo válida, no se verifican las últimas dos propiedades:
  1. El conjunto de eventos ni pasados ni futuros no es tridimensional
  2. No existe una noción de simultaneidad indepediente del observador como en mecánica clásica.


Eventobs.gif
En mecánica relativista la medida del transcurso del tiempo depende del sistema de referencia donde esté situado el observador y de su estado de movimiento, es decir, diferentes observadores miden diferentes tiempos transcurridos entre dos eventos causalmente conectados. Por tanto, la duración de un proceso depende del sistema de referencia donde se encuentre el observador.
De acuerdo con la teoría de la relatividad, fijados dos observadores situados en diferentes marcos de referencia, dos sucesos A y B dentro de la categoría (3) (eventos ni pasados ni futuros), pueden ser percibidos por los dos observadores como simultáneos, o puede que A ocurra "antes" que B para el primer observador mientras que B ocurre "antes" de A para el segundo observador. En esas circunstancias no existe, por tanto, ninguna posibilidad de establecer una noción absoluta de simultaneidad independiente del observador. Según la relatividad general el conjunto de los sucesos dentro de la categoría (3) es un subconjunto tetradimensional topológicamente abierto del espacio-tiempo. Cabe aclarar que esta teoría sólo parece funcionar con la rígida condición de dos marcos de referencia solamente. Cuando se agrega un marco de referencia adicional, la teoría de la Relatividad queda invalidada: el observador A en la tierra percibirá que el observador B viaja a mayor velocidad dentro de una nave espacial girando alrededor de la tierra a 7,000 kilómetros por segundo. El observador B notará que el dato de tiempo que da su reloj se ha desacelerado y concluye que el tiempo se ha dilatado por causa de la velocidad de la nave. Un observador C localizado fuera del sistema solar, notará que tanto el hombre en tierra como el astronauta girando alrededor de la tierra, están viajando simultáneamente -la nave espacial y el planeta tierra- a 28,000 kilómetros por segundo alrededor del sol. La más certera conclusión acerca del comportamiento del reloj en la nave espacial, es que ese reloj está funcionando mal, porque no fue calibrado ni probado para esos nuevos cambios en su ambiente. Esta conclusión está respaldada por el hecho que no existe prueba alguna que muestre que el tiempo es objetivo.
Sólo si dos sucesos están atados causalmente todos los observadores ven el suceso "causal" antes que el suceso "efecto", es decir, las categorías (1) de eventos pasados y (2) de de eventos futuros causalmente ligados sí son absolutos. Fijado un evento E el conjunto de eventos de la categoría (3) que no son eventos ni futuros ni pasados respecto a E puede dividirse en tres subconjuntos:
(a) El interior topológico de dicho conjunto, es una región abierta del espacio-tiempo y constituye un conjunto acronal. Dentro de esa región dados cualesquiera dos eventos resulta imposible conectarlos por una señal luminosa que emitida desde el primer evento alcance el segundo.
(b) La frontera del futuro o parte de la frontera topológica del conjunto, tal que cualquier punto dentro de ella puede ser alcanzado por una señal luminosa emitida desde el evento E.
(c) La frontera del pasado o parte de la frontera topológica del conjunto, tal que desde cualquier punto dentro de ella puede enviarse una señal luminosa que alcance el evento E.
Las curiosas relaciones causales de la teoría de la relatividad, conllevan a que no existe un tiempo único y absoluto para los observadores, de hecho cualquier observador percibe el espacio-tiempo o espacio tetradimensional según su estado de movimiento, la dirección paralela a su cuadrivelocidad coincidirá con la dirección temporal, y los eventos que acontecen en las hipersuperficies espaciales perpendiculares en cada punto a la dirección temporal, forman el conjunto de acontecimientos simultáneos para ese observador.
Lamentablemente, dichos conjuntos de acontecimientos percibidos como simultáneos difieren de un observador a otro.


Artículo principal: Dilatación del tiempo
Si el tiempo propio es la duración de un suceso medido en reposo respecto a ese sistema, la duración de ese suceso medida desde un sistema de referencia que se mueve con velocidad constante con respecto al suceso viene dada por:
 \Delta t^\prime = \frac{\Delta t_i}{ \sqrt{1-\frac{v^2}{c^2}}}


El tiempo en mecánica cuántica

En mecánica cuántica debe distinguirse entre la mecánica cuántica convencional, en la que puede trabajarse bajo el supuesto clásico de un tiempo absoluto, y la mecánica cuántica relativista, dentro de la cual, al igual que sucede en la teoría de la relatividad, el supuesto de un tiempo absoluto es inaceptable e inapropiada
En la teoría de la mecánica hiperondulatoria el concepto del tiempo es un campo escalar, aunque guarda similitud con el concepto relativista, pero solo para fenómenos gravitatorios, no así para fenómenos inerciales, basándose éste en una estructura geométrica de tres dimensiones. El devenir del tiempo en esta teoría contempla las diferentes categorías (pasado, presente y futuro) como coordenadas geométricas dentro de un espacio temporal ya dado (entramado de tiempo), dichas categorías serían puntos en las diferentes capas de lacronósfera, similar de alguna manera a los anillos de crecimiento en el tronco cortado de un árbol. Dicha teoría considera la flecha del tiempo y la variación de la entropía una mera percepción humana.

]La flecha del tiempo y la entropía

Artículo principal: Flecha del tiempo
Se ha señalado que la dirección del tiempo está relacionada con el aumento de entropía, aunque eso parece deberse a las peculiares condiciones que se dieron durante el Big Bang. Aunque algunos científicos como Penrose han argumentado que dichas condiciones no serían tan peculiares si consideramos que existe un principio o teoría física más completa que explique por qué nuestro universo, y tal vez otros, nacen con condiciones iniciales aparentemente improbables, que se reflejan en una bajísima entropía inicial.

]La medición del tiempo

Reloj de sol, de bolsillo.
La cronología (histórica, geológica, etc.) permite datar los momentos en los que ocurren determinados hechos (lapsos relativamente breves) o procesos (lapsos de duración mayor). En una línea de tiempo se puede representar gráficamente los momentos históricos en puntos y los procesos en segmentos.
Las formas e instrumentos para medir el tiempo son de uso muy antiguo, y todas ellas se basan en la medición del movimiento, del cambio material de un objeto a través del tiempo, que es lo que puede medirse. En un principio, se comenzaron a medir los movimientos de los astros, especialmente el movimiento aparente del Sol, dando lugar al tiempo solar aparente. El desarrollo de la astronomía hizo que, de manera paulatina, se fueran creando diversos instrumentos, tales como los relojes de sol, las clepsidras o los relojes de arena y loscronómetros. Posteriormente, la determinación de la medida del tiempo se fue perfeccionando hasta llegar al reloj atómico. Todos los relojes modernos desde la invención del reloj mecánico, han sido construidos con el mismo principio del "tic tic tic". El reloj atómico está calibrado para contar 9,192,631,770 vibraciones del átomo del Cesium para luego hacer un "tic".

1 comentarios:


""TEMAS DE FISICA"" dijo...
hola compañeros a qui les dejo mi tema que es tiempo espero y les guste la información att: MORALES LABASTIDA CRISTIAN

Publicar un comentario en la entrada


 tiempo es la magnitud física con la que medimos la duración o separación de acontecimientos sujetos a cambio, de los sistemas sujetos a observación, esto es, el período que transcurre entre el estado del sistema cuando éste aparentaba un estado X y el instante en el que X registra una variación perceptible para un observador (o aparato de medida). Es la magnitud que permite ordenar los sucesos en secuencias, estableciendo un pasado, un presente y un futuro, y da lugar al principio de causalidad, uno de los axiomas del método científico. El tiempo ha sido frecuentemente concebido como un flujo sucesivo de situaciones atomizadas.
Su unidad básica en el Sistema Internacional es el segundo, cuyo símbolo es s (debido a que es un símbolo y no una abreviatura, no se debe escribir con mayúscula, ni como "seg", ni agregando un punto posterior).


Causalidad (física)paradoja de los gemelos y espacio-tiempo
]
El concepto físico del tiempo

Dados dos eventos puntuales E1 y E2, que ocurren respectivamente en instantes de tiempo t1 y t2, y en puntos del espacio diferentes P1 yP2, todas las teorías físicas admiten que éstos pueden cumplir una y sólo una de las siguientes tres condiciones:
  1. Es posible para un observador estar presente en el evento E1 y luego estar en el evento E2, y en ese caso se afirma que E1 es un evento anterior a E2. Además, si eso sucede, ese observador no podrá verificar 2.
  2. Es posible para un observador estar presente en el evento E2 y luego estar en el evento E1, y en ese caso se afirma que E1 es un evento posterior a E2. Además si eso sucede, ese observador no podrá verificar 1.
  3. Es imposible, para un observador puntual, estar presente simultáneamente en los eventos E1 y E2. .
Dado un evento cualquiera, el conjunto de eventos puede dividirse según esas tres categorías anteriores. Es decir, todas las teorías físicas permiten, fijado un evento, clasificar a los eventos en: (1) pasado, (2) futuro y (3) resto de eventos (ni pasados ni futuros). La clasificación de un tiempo presente es debatible por la poca durabilidad de este intervalo que no se puede medir como un estado actual sino como un dato que se obtiene en una contínua sucesión de eventos. En mecánica clásica esta última categoría está formada por los sucesos llamados simultáneos, y en mecánica relativista, por los eventos no relacionados causalmente con el primer evento. Sin embargo, la mecánica clásica y la mecánica relativista difieren en el modo concreto en que puede hacerse esa división entre pasado, futuro y otros eventos y en el hecho de que dicho carácter pueda ser absoluto o relativo respecto al contenido de los conjuntos.]

El tiempo en mecánica clásica

En la mecánica clásica, el tiempo se concibe como una magnitud absoluta, es decir, es un escalar cuya medida es idéntica para todos losobservadores (una magnitud relativa es aquella cuyo valor depende del observador concreto). Esta concepción del tiempo recibe el nombre de tiempo absoluto. Esa concepción está de acuerdo con la concepción filosófica de Kant, que establece el espacio y el tiempo como necesarios por cualquiera experiencia humana. Kant asimismo concluyó que el espacio y el tiempo eran conceptos subjetivos. Cada observador hará una división tripartita de los eventos clasificándolos en: (1) eventos pasados, (2) eventos futuros y (3) eventos ni pasados y ni futuros. La mecánica clásica y la física pre-relativista asumen:
  1. Fijado un acontecimiento concreto todos los observadores sea cual sea su estado de movimiento dividirán el resto de eventos en los mismos tres conjuntos (1), (2) y (3), es decir, dos observadores diferentes coincidirán en qué eventos pertenecen al pasado, al presente y al futuro, por eso el tiempo en mecánica clásica se califica de "absoluto" porque es una distinción válida para todos los observadores (mientras que en mecánica relativista esto no sucede y el tiempo se califica de "relativo").
  2. En mecánica clásica, la última categoría, (3), está formada por un conjunto de puntos tridimensional, que de hecho tiene la estructura de espacio euclídeo. Dados dos eventos se llaman simultáneos fijado uno de ellos el segundo es un evento de la categoría (3).
Aunque dentro de la teoría especial de la relatividad y dentro de la teoría general de la relatividad, la división tripartita de eventos sigue siendo válida, no se verifican las últimas dos propiedades:
  1. El conjunto de eventos ni pasados ni futuros no es tridimensional
  2. No existe una noción de simultaneidad indepediente del observador como en mecánica clásica.


Eventobs.gif
En mecánica relativista la medida del transcurso del tiempo depende del sistema de referencia donde esté situado el observador y de su estado de movimiento, es decir, diferentes observadores miden diferentes tiempos transcurridos entre dos eventos causalmente conectados. Por tanto, la duración de un proceso depende del sistema de referencia donde se encuentre el observador.
De acuerdo con la teoría de la relatividad, fijados dos observadores situados en diferentes marcos de referencia, dos sucesos A y B dentro de la categoría (3) (eventos ni pasados ni futuros), pueden ser percibidos por los dos observadores como simultáneos, o puede que A ocurra "antes" que B para el primer observador mientras que B ocurre "antes" de A para el segundo observador. En esas circunstancias no existe, por tanto, ninguna posibilidad de establecer una noción absoluta de simultaneidad independiente del observador. Según la relatividad general el conjunto de los sucesos dentro de la categoría (3) es un subconjunto tetradimensional topológicamente abierto del espacio-tiempo. Cabe aclarar que esta teoría sólo parece funcionar con la rígida condición de dos marcos de referencia solamente. Cuando se agrega un marco de referencia adicional, la teoría de la Relatividad queda invalidada: el observador A en la tierra percibirá que el observador B viaja a mayor velocidad dentro de una nave espacial girando alrededor de la tierra a 7,000 kilómetros por segundo. El observador B notará que el dato de tiempo que da su reloj se ha desacelerado y concluye que el tiempo se ha dilatado por causa de la velocidad de la nave. Un observador C localizado fuera del sistema solar, notará que tanto el hombre en tierra como el astronauta girando alrededor de la tierra, están viajando simultáneamente -la nave espacial y el planeta tierra- a 28,000 kilómetros por segundo alrededor del sol. La más certera conclusión acerca del comportamiento del reloj en la nave espacial, es que ese reloj está funcionando mal, porque no fue calibrado ni probado para esos nuevos cambios en su ambiente. Esta conclusión está respaldada por el hecho que no existe prueba alguna que muestre que el tiempo es objetivo.
Sólo si dos sucesos están atados causalmente todos los observadores ven el suceso "causal" antes que el suceso "efecto", es decir, las categorías (1) de eventos pasados y (2) de de eventos futuros causalmente ligados sí son absolutos. Fijado un evento E el conjunto de eventos de la categoría (3) que no son eventos ni futuros ni pasados respecto a E puede dividirse en tres subconjuntos:
(a) El interior topológico de dicho conjunto, es una región abierta del espacio-tiempo y constituye un conjunto acronal. Dentro de esa región dados cualesquiera dos eventos resulta imposible conectarlos por una señal luminosa que emitida desde el primer evento alcance el segundo.
(b) La frontera del futuro o parte de la frontera topológica del conjunto, tal que cualquier punto dentro de ella puede ser alcanzado por una señal luminosa emitida desde el evento E.
(c) La frontera del pasado o parte de la frontera topológica del conjunto, tal que desde cualquier punto dentro de ella puede enviarse una señal luminosa que alcance el evento E.
Las curiosas relaciones causales de la teoría de la relatividad, conllevan a que no existe un tiempo único y absoluto para los observadores, de hecho cualquier observador percibe el espacio-tiempo o espacio tetradimensional según su estado de movimiento, la dirección paralela a su cuadrivelocidad coincidirá con la dirección temporal, y los eventos que acontecen en las hipersuperficies espaciales perpendiculares en cada punto a la dirección temporal, forman el conjunto de acontecimientos simultáneos para ese observador.
Lamentablemente, dichos conjuntos de acontecimientos percibidos como simultáneos difieren de un observador a otro.


Artículo principal: Dilatación del tiempo
Si el tiempo propio es la duración de un suceso medido en reposo respecto a ese sistema, la duración de ese suceso medida desde un sistema de referencia que se mueve con velocidad constante con respecto al suceso viene dada por:
 \Delta t^\prime = \frac{\Delta t_i}{ \sqrt{1-\frac{v^2}{c^2}}}


El tiempo en mecánica cuántica

En mecánica cuántica debe distinguirse entre la mecánica cuántica convencional, en la que puede trabajarse bajo el supuesto clásico de un tiempo absoluto, y la mecánica cuántica relativista, dentro de la cual, al igual que sucede en la teoría de la relatividad, el supuesto de un tiempo absoluto es inaceptable e inapropiada
En la teoría de la mecánica hiperondulatoria el concepto del tiempo es un campo escalar, aunque guarda similitud con el concepto relativista, pero solo para fenómenos gravitatorios, no así para fenómenos inerciales, basándose éste en una estructura geométrica de tres dimensiones. El devenir del tiempo en esta teoría contempla las diferentes categorías (pasado, presente y futuro) como coordenadas geométricas dentro de un espacio temporal ya dado (entramado de tiempo), dichas categorías serían puntos en las diferentes capas de lacronósfera, similar de alguna manera a los anillos de crecimiento en el tronco cortado de un árbol. Dicha teoría considera la flecha del tiempo y la variación de la entropía una mera percepción humana.

]La flecha del tiempo y la entropía

Artículo principal: Flecha del tiempo
Se ha señalado que la dirección del tiempo está relacionada con el aumento de entropía, aunque eso parece deberse a las peculiares condiciones que se dieron durante el Big Bang. Aunque algunos científicos como Penrose han argumentado que dichas condiciones no serían tan peculiares si consideramos que existe un principio o teoría física más completa que explique por qué nuestro universo, y tal vez otros, nacen con condiciones iniciales aparentemente improbables, que se reflejan en una bajísima entropía inicial.

]La medición del tiempo

Reloj de sol, de bolsillo.
La cronología (histórica, geológica, etc.) permite datar los momentos en los que ocurren determinados hechos (lapsos relativamente breves) o procesos (lapsos de duración mayor). En una línea de tiempo se puede representar gráficamente los momentos históricos en puntos y los procesos en segmentos.
Las formas e instrumentos para medir el tiempo son de uso muy antiguo, y todas ellas se basan en la medición del movimiento, del cambio material de un objeto a través del tiempo, que es lo que puede medirse. En un principio, se comenzaron a medir los movimientos de los astros, especialmente el movimiento aparente del Sol, dando lugar al tiempo solar aparente. El desarrollo de la astronomía hizo que, de manera paulatina, se fueran creando diversos instrumentos, tales como los relojes de sol, las clepsidras o los relojes de arena y loscronómetros. Posteriormente, la determinación de la medida del tiempo se fue perfeccionando hasta llegar al reloj atómico. Todos los relojes modernos desde la invención del reloj mecánico, han sido construidos con el mismo principio del "tic tic tic". El reloj atómico está calibrado para contar 9,192,631,770 vibraciones del átomo del Cesium para luego hacer un "tic".

1 comentarios:


""TEMAS DE FISICA"" dijo...
hola compañeros a qui les dejo mi tema que es tiempo espero y les guste la información att: MORALES LABASTIDA CRISTIAN

Publicar un comentario en la entrada